
Chapter 7: Real-Time Particle Systems on the GPU in Dynamic Environments

80

Chapter 7

Real-Time Particle Systems on
the GPU in Dynamic

Environments

Shannon Drone13
Microsoft Corporation

Figure 1. From left to right, an N-Body Gravity simulation, a flocking simulation, and
particles interacting with and influencing their environment.

7.1 Introduction

Particle systems ([Reeves83, Sims90, McAllister00]) have been the mainstay of video
game effects for the past decade. They have been used to simulate everything from
explosions ([Burg2000]) to swarms of insects ([Reynolds87]). As more and more
processing power is becoming available on commodity graphics processors, many video
game subsystems are now moving over to the GPU. Particle systems have moved with
them, but in doing so, have lost some of their functionality in the move.

In this chapter we introduce several methods for creating advanced interaction particle
system simulations whose data and computations reside entirely on the GPU. We use
non-parametric particle systems on the GPU to display complex particle behavior
otherwise reserved for CPU based particle systems. In this chapter we cover the basics
of non-parametric particle systems, particle-to-particle interactions, and particle versus
scene interactions.

13 email: shanond@microsoft.com

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

81

For the intents of this chapter, we base our approach on an assumption that the particle
system data is not instrumental to gameplay and that the CPU does not need to results
of particle system operations to perform any other game-related functions. However, it is
a fairly straightforward extension of our approach to provide particle data back to the
CPU by read-back.

7.2 Rendering System Requirements

While many of the methods described here can be adapted to work on the majority of
consumer video graphics hardware currently in the market, some techniques require the
use of more advanced features that can only be found on Direct3D 10-level graphics
devices (as described in [Blythe06]).

For the following techniques we assume that the video hardware is a recent video card
that supports at least a Direct3D 10 level of functionality. In our case we are specifically
going to take advantage of such features of this generation of hardware as additive
alpha blending; instancing support; the ability render directly to volume textures; the
ability to sample textures or data buffers from any stage of the pipeline; support for pixel,
vertex, and geometry shaders; the ability to save transformed geometry back into GPU
memory; texture array support; and automatic generation of mip-maps.

7.3 Non-Parametric Particle Systems

Parametric or stateless particle systems are easy to handle in programmable graphics
pipelines. Because each particle position is described parametrically the position of the
particle at any time can be determined by plugging that time into an equation of motion.
This approach has two main benefits. The first is that it requires no extra storage for
intermediate particle state. The second is that it is an exact analytical solution to the
path of motion for the particle. No integration of the equations of motion is required to
find the position of the particle.

Unfortunately, there are drawbacks to using parametric systems. The main one is that
once set, the motion of a particle cannot change. This limits the ability of a parametric
particle system to react to its environment in real-time. In addition, it limits the system to
paths of motion with known analytical solutions (as described in [Lutz04]).

For our work, we use non-parametric particle systems similar to [Lutz04]. These work
on the premise that the equations of acceleration are integrated over the course of the
simulation to compute instantaneous velocity. The velocity equation is integrated over
the course of the simulation to compute instantaneous position. This approach is less
accurate than a purely analytical parametric solution, but maintains a level of flexibility
and interaction far beyond a parametric system.

Chapter 7: Real-Time Particle Systems on the GPU in Dynamic Environments

82

7.3.1 Storage Requirement

In order to integrate the equations of acceleration and velocity, we must store the
immediate values for the previous frame’s instantaneous velocity and position. These
will be known as the particle’s state. For the remaining techniques, we can store particle
state using either of two storage objects readily available on current graphics hardware.

The first option is to store state in a vertex buffer. In this approach, each vertex
represents the state of one particle in its entirety. It must contain at a minimum, the
instantaneous position and velocity of the particle at the current time value. The
particles are stored linearly in the vertex buffer object.

The second option is to store the particle state in series of floating point textures.
Whereas [Lutz04] used several individual textures to store the data, we split the data
between multiple slices of a single texture array. A texture array is a single object that
acts as a container for an array of traditional textures. The first array slice stores
instantaneous position and the second instantaneous velocity. Additional array slices
may be used to store additional data. This data could be stored in one-dimensional
textures, but size limitations on one-dimensional textures for current API and hardware
versions would limit us to 8192 particles in the best case. Therefore, we store particle
state in two-dimensional textures where the height and width of the texture are the next
largest integral square of the number of particles.

7.3.2 Integrating the Equations of Motion

Because the particle state is integrated using a series of instantaneous accelerations
and velocities, the accuracy of the solution depends entirely on the length of time
between the calculation of the previous values and the current values as well as the
integration technique used. Simple Euler integration will work in most cases where the
behavior is simple or where the time between calculations is sufficiently small. However,
a more advanced integration such as a Runge-Kutta based integration scheme maybe
be used where further accuracy is required. Note that using a more advanced
integration solution may require storage of several previous particle states. For the
techniques expressed here, we use Euler integration.

7.3.3 Saving Particle States

The current methodology of integrating particle motion requires a read-modify-write
operation on the particle state data. The Euler integration scheme for velocity requires
that the current velocity be known and added to the instantaneous acceleration scaled
by the current time step. Unfortunately, read-modify-write operations are illegal in the
programmable parts of the current graphics pipeline (they are allowed in the blend
stages which are currently not programmable). The solution is use a “ping-pong”
technique to essentially double buffer the data. In the particle update phase, the buffer

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

83

or texture being sampled contains the instantaneous particle state for the previous
frame. The particle update phase stores the new instantaneous particle state in other
buffer or texture. The buffers or textures are swapped for the next frame so that the
particle update phase is always reading from the previous frame’s data.

7.3.4 Changing Behaviors

Because our particles are no longer affixed to a predestined path of motion, changing
behaviors of individual particles is as easy as changing their individual velocities or
positions. While these will result in an immediate change of motion for the particle, a
change in position will cause a break in the C1 continuity (or the position curve), while a
change in velocity will cause a break in the C2 continuity (i..e the derivative of the
position curve). In the following techniques, we will only change acceleration, and
therefore only break C3 of the position curve. This results in a much smoother visual
appearance of particle motion.

7.4 Particles That React to Other Particles

Figure 2. Flocking and gravity simulations

Chapter 7: Real-Time Particle Systems on the GPU in Dynamic Environments

84

7.4.1 N-Body Problems

Many particle systems require that every particle influence every other particle in the
system. These are generally classified as N-Body problems. We outline a method of
dealing with N-Body problems on the GPU.

7.4.2 Force Splatting for N2 Particle Interactions

The goal of force splatting is to project the force from one particle onto all other particles
during a single operation. In this case, the operation is the rendering of a quad primitive.
We create a texture that acts and an accumulation buffer for all forces applied to the
particles. This buffer will be the target of the rasterization operations that will
accumulate particle forces. Each texel in the force texture holds the accumulated forces
acting upon a single particle. We also create a stack of N quad primitives, where N is
the number of particles in the system. The dimensions of the quads are such that they
will exactly cover the force buffer when rasterized. The four vertices of each quad in the
stack contain a vertex element which identifies the exact particle represented by the
quad. During rasterization, this interpolated vertex element is used to fetch properties of
the particle from the particle texture or the particle buffer.

Figure 3. Force splatting by rendering multiple into a force texture with alpha blending

During the rasterization of a single quad, the forces are calculated between the particle
being rasterized to and the particle represented by the vertex element in the vertices of
the quad. Forces are accumulated by rendering successive quad with additive alpha
blending enabled.

While less than elegant in terms of algorithmic complexity, the force splatting algorithm
exploits the fast rasterization and alpha blending capabilities of modern graphics
hardware without the need to continually recreate complex space partitioning structures
on the GPU.

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

85

7.4.3 Gravity Simulation

Figure 4. N-body gravity simulation using force splatting to accumulate forces between
all N particles

7.4.3.1 Using Force Splatting for Gravity Interactions

To compute the gravitational force of all particles to all other particles, we use the
method of force splatting mentioned above to accumulate all of the forces imparted on
each particle in the system. In the particle update phase, this force is divided by the
particle’s mass to determine the instantaneous acceleration of the particle. The
equations of motion are integrated, and the particle system is updated.

Chapter 7: Real-Time Particle Systems on the GPU in Dynamic Environments

86

7.4.4 Flocking Particles on the GPU

Figure 5. A boids implementation handled entirely on the GPU. Particles use force
splatting for collision avoidance, and separation while using fast mip map generation for
coherence and goal seeking. A single space-ship mesh is then instanced using particle
position and orientation as a transform.

Perhaps more relevant to game development is the idea of flocking particle systems.
Oftentimes particle systems are used to create the illusion of flocks of birds or bugs
swarming around a light or fallen comrade. Traditional flocking behaviors need to follow
a few simple rules in order to look plausible. In this situation, the rules are collision
avoidance, separation, cohesion, and alignment. See [Reynolds87, Reynolds99] for in-
depth descriptions of flocking behaviors.

7.4.4.1 Force Splatting for Collision Avoidance and Separation

The flocking simulation takes advantage of the previous N2 force splatting to avoid
collisions between particles as well as to maintain a certain comfortable separation
between all particles. Instead of computing the gravitational attraction between particles,

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

87

we’re computing a repellant force for each particle based upon either how close the
particles are to colliding or how much space is between particles.

7.4.4.2 Fast Averaging for Cohesion and Alignment

Behaviors such as cohesion and alignment rely on the knowledge of the average
position and average velocity of the particles respectively. Fortunately, modern graphics
hardware provides a fast way of averaging entire textures by being able to generate mip-
maps on the fly. By sampling from the smallest mip-level during the particle update
phase, we can create a force vector from the particle to the center of mass for cohesion
or create a force vector that aligns our particle with the average velocity of all other
particles. This force vector is added to the force vector sampled from the force
accumulation texture.

Figure 6. Fast averaging of particle states by generating mip-maps

7.5 Particles Reacting to Their Environments

In order for non-parametric particle systems to have a true advantage over parametric or
scripted systems, they must react to their environments as well as to each other.

Chapter 7: Real-Time Particle Systems on the GPU in Dynamic Environments

88

7.5.1 Reacting to Spherical Objects

Figure 7. Thousands of spaceships fleeing from a user-controlled obstacle

The simplest way to interact with a particle system is to influence it through a limited set
of “point charges.” We use this approach for flee and seek behavior. To repel or attract
an entire flock, we create a limited set of spherical targets and pass in their parameters
as shader variables. This allows the particles to react to “point charges” introduced into
the system. The ‘seek and flee’ algorithms are a straight GPU implementation of
[Reynolds99].

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

89

7.5.2 Reacting to Arbitrary Objects Using Render-to-Volume

Figure 8. Particles bounce off and flow along both the box and animated lizard

Many times particles must interact with shapes that cannot be accurately described by a
fixed number of spheres. [Lutz04] partitioned spaced into a two-dimensional grid. This
effectively limited the problem of collision to a height-field. In our algorithm we partition
the space in which the particles will interact into a regular three-dimensional grid. Before
the particle update phase, the scene geometry is placed into this grid in such a way that
each cell in the grid contains the plane equation and velocity of the scene geometry that
intersects that grid cell.

During the particle update phase, the particles determine which grid cell they are in and
fetch the plane equation and velocity from the grid cell. These are used to determine
whether there has been an intersection with the scene geometry and the new position
and velocity of the particle if such a collision occurred.

This method requires that two problems be overcome. The first is how to efficiently
populate the three-dimensional grid with scene data. The second is how to efficiently
fetch this data during the particle update phase. Fortunately, both problems have the
same solution. Modern hardware provides support for regular three-dimensional grid

Chapter 7: Real-Time Particle Systems on the GPU in Dynamic Environments

90

structures in the form of volume textures. Additionally, volume textures can be rendered
into or sampled using the graphics hardware.

7.5.2.1 Populating the Volume Texture

The volume texture must be populated with the scene geometry once slice at a time.
Normally this would require a separate invocation of the rendering pipeline for each slice
of the volume and then again for each object to be rendered. However, the latest
advances in graphics hardware provide the ability to bind all slices of the volume to the
pipeline at once and selectively output geometry to each slice, therefore reducing the
process to one invocation of the rendering pipeline for each object. This latest
advancement in graphics hardware comes in the form of a new addition to the rendering
pipeline called the geometry shader. In addition to being able to specify output slices
into a volume render target, the geometry shader can also perform operations on whole
primitives.

The process works as follows: the scene geometry is drawn with hardware instancing
turned on. We draw S instances of the scene geometry where S is the number of slices
of the volume texture. In the shader, each triangle primitive is sent to a different slice of
the volume depending on the instance ID of the geometry.

Figure 9. Rendering an object into a volume using instancing to send it to all slices

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

91

Using the aforementioned geometry shader, the plane equation for the primitive is
computed and passed along to the pixel shader along with the velocities of each of the
vertices. In order to ensure only geometry that passes through a particular slice ends up
being rasterized to that slice, user specified clip planes are provided to clip any geometry
that falls outside of its specified slice. The pixel shader then outputs the plane equation
and interpolated velocity into the volume texture.

Figure 10. The plane equation and velocity are rendered into each voxel of the volume

7.5.2.2 Sampling the Volume Texture

In the particle update phase, the particle volume texel that encompasses the particle is
sampled for its plane equation and velocity. The particle is then checked for collisions
against the plane equation. If a collision occurs, the particle is deflected according to its
own velocity, the plane equation, and the plane velocity.

Chapter 7: Real-Time Particle Systems on the GPU in Dynamic Environments

92

7.5.2.3 Resolving Aliasing

With detailed geometry or a coarse volume texture representation, multiple primitives
may be rasterized into the same volume cell. To store all plane equations and velocities
that intersect that grid cell would take too much video memory and require multiple
fetches in the sampling phase. Therefore, we keep only the most important plane
equation and velocity to use in our computations. We do this by rendering the scene
geometry into the volume texture from the direction that the majority of the particles will
be traveling in. This is often the point of view of the emitter. We then use the depth test
in the hardware to ensure that the primitive closest to the camera position used when
rendering the scene into the volume will be kept. Since the majority of the particles are
moving in the direction away from the camera we can ensure that in an ideal situation
most particles would hit this plane before hitting any other plane that would also occupy
this particular cell. However, the incorrect results may be achieved for particles traveling
in a direction that is too different from the average direction. This error can also be
avoided with a denser volume texture.

Figure 11. Aliasing can occur when two primitives occupy the same voxel. Keep the one
closest to the direction of motion of most particles.

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

93

Figure 12. One way to combat aliasing is to use a denser volume texture

7.6 Environments That React to Particles

Figure 13. The particles paint into the diffuse channel of the box and lizard when they
intersect the objects.

Chapter 7: Real-Time Particle Systems on the GPU in Dynamic Environments

94

Finally, we show how particles can actually affect their environments. We use the
particles to affect the appearance of the world geometry.

7.6.1 Painting with Particles Using a Gather Approach

Finally, we show how the appearance of the scene geometry can change based upon
it’s interaction with particles. In particular, the particles will apply paint to any part of the
object that they encounter.

7.6.1.1 Rendering the Position Buffer

First we need to create a position buffer for each object in the scene. The position buffer
is a floating point texture that contains a world-space position for each texel in the
object’s UV space. This is effectively a UV to world space mapping. To populate the
position buffer, we render the mesh using the texture uv coordinates as position
coordinates. This renders the mesh geometry in UV space. The pixel shader then
outputs the interpolated position data into the position texture. Care must be taken to
ensure that the uv element being used is a unique parameterization of the mesh,
otherwise the results will be incorrect.

Figure 14. Creation of the position texture: World position is rendered into UV space.

7.6.1.2 Gathering Paint Splotches

With the position buffer populated, we need to gather particles from the particle buffer or
texture and determine whether they intersect the mesh. If so, we add their paint to a
paint texture. We handle this by setting the paint texture as a render target and
rasterizing a quad that, when rendered, covers the render target exactly. During
rasterization, we sample the world-space position from the position texture for the
current texel. We then iterate over the particles in the particle buffer or texture. For
each particle, we determine if it is close enough to the world-space position in the

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

95

position buffer to leave any paint. If so, we add the paint influence to the total paint
output for this pixel shader invocation.

Figure 15. A pixel shader passes over the position texture. For each particle, it
determines whether the current position intersects the particle. If it does, it outputs an
appropriate amount of paint into the diffuse texture.

7.6.1.3 Amortizing the Gather over Time

For systems containing thousands of particles, iterating over all particles during gather
time may not provide the best frame rate. For hardware with a fixed instruction count it
may not be possible to loop over all particles. We amortize the cost of gathering over
several frames by determining a fixed amount of particles to gather. For example, for
the first frame we gather the first G particles. For the next frame we gather the next G
particles, and so on until we loop back around to the beginning of the particle buffer.
This gives much better performance with little loss in the quality of the effect.

7.7 Acknowledgements

We would like to thank Matt Dudley for the lizard art.

7.8 References

[BLYTHE06] BLYTHE, D. 2006. The Direct3D 10 system. ACM Trans. Graph. 25, 3, pp. 724-

734.

[BURG00] J. VAN dER BURG. 2000. Building an Advanced Particle System. Gamasutra,

June 2000.

Chapter 7: Real-Time Particle Systems on the GPU in Dynamic Environments

96

[LUTZ04] LUTZ, L. 2004. Bulding a Million Particle System. In proceedings of Game

Developers Conference, San Francisco, CA, March 2004.

[MCALLISTER00] McAllister, D. K. 2000. The Design of an API for Particle Systems.

University of North Carolina Technical Report TR 00-007

[REEVES83] REEVES, W. T. 1983. Particle systems -- a technique for modeling a class of

fuzzy objects. ACM Transactions on Graphics, 2(2), pp. 91-108, Apr. 1983.

[REYNOLDS87] REYNOLDS, C. 1987. Flocks, Herds and Schools: A Distributed Behavioural

Model. Computer Graphics, 21(4), pp.25-34.

[REYNOLDS99] REYNOLDS, C. W. 1999. Steering Behaviors for Autonomous Characters, in

the proceedings of Game Developers Conference 1999 held in San Jose, California.
Miller Freeman Game Group, San Francisco, California. pp. 763-782.

 [SIMS90] SIMS, K. 1990. Particle Animation and Rendering Using Data Parallel

Computation. ACM Computer Graphics (SIGGRAPH '90), 24(4), pp. 405-413,
August 1990.

